Hill Engineering Blog

Welcome Dallen Andrew

We would like to welcome Dallen Andrew to Hill Engineering. Dallen has 10 years of experience as a mechanical engineer supporting aircraft structural integrity programs. He received a BS degree in Mechanical Engineering from Utah State University in 2009, and a MS degree in Mechanical Engineering from the University of Utah in 2011.

During his career, Dallen has gained experience in many aspects of aircraft structural integrity, with specialization in the fatigue and fracture of metals. He has worked on many projects requiring him to utilize his capabilities in  fatigue crack growth analysis, fracture mechanics, durability and damage tolerance analysis (DADTA), fatigue testing, continuing damage, residual stress, finite element analysis (FEA), and non-destructive inspection.

Dallen is an organizer of the Engineered Residual Stress Implementation (ERSI) working group developing the analytical framework to allow the benefits from deep engineered residual stresses to be applied to aircraft inspection intervals for the United States Air Force. Dallen has significant experience supporting the A-10 and T-38 aircraft fleets. He also has significant expertise in the use of AFGROW and NASGRO fracture mechanics and damage tolerance software packages.

Please contact us today for additional information about Hill Engineering and the services we offer.

Agreement with VEQTER for Deep-Hole Drilling technology

Hill Engineering, answering strong demand for its residual stress measurement services, would like to announce our agreement with VEQTER, Ltd to license the Deep-Hole Drilling (DHD) technology. VEQTER, along with the University of Bristol, aided in the development of the DHD technique, and have practiced the technology for over 25 years. With this agreement, VEQTER will provide Hill Engineering with the equipment, technology, and support to deliver state-of-the-art DHD measurements within the North and South American Continents. Continue reading Agreement with VEQTER for Deep-Hole Drilling technology

Case Study: Machine distortion modeling

We’ve recently uploaded a new case study on the topic of part distortion caused by machining. Distortion is a significant problem faced by many industries, especially where rigorous dimensional tolerances are required. When not appropriately accounted for, distortion can lead to significant economic loss and should be managed for effective design and production. Continue reading Case Study: Machine distortion modeling

Engineered Residual Stress Implementation workshop

Hill Engineering is proud to support the USAF and their objective to advance damage tolerance analysis methods through the Engineered Residual Stress Implementation (ERSI) workshop. At this year’s ERSI meeting (September 12-13), Hill Engineering will meet with other stakeholders in the USAF aircraft community to review progress over the past year towards implementation of engineered residual stress in the USAF fleet. Continue reading Engineered Residual Stress Implementation workshop

Welcome John Watton

We would like to welcome John Watton to Hill Engineering. John comes with more than 30 years of experience, most recently from Arconic where he worked at the Arconic Technical Center. John obtained an undergraduate degree in mechanical engineering jointly with Acadia University and the Technical University of Nova Scotia, and earned graduate degrees in mechanical engineering at Stanford University (masters, applied mechanics) and Carnegie Mellon University (Ph.D., design and expert systems).

Continue reading Welcome John Watton

Hill Engineering introduces ExpressRS

For materials engineers, designers, and managers seeking residual stress measurements, Hill Engineering is a trusted source for a broad range of best-in-class measurement capabilities. But while we always strive to deliver quality results in a timely manner, sometimes a job requires a faster than normal turn-around. This is why we’ve introduced ExpressRSTM, a service geared toward expedited delivery of residual stress measurement results. Continue reading Hill Engineering introduces ExpressRS

Additive Manufacturing Benchmark Test Series

As a follow-up to our previous post about additive manufacturing (AM) we wanted to highlight some other activities in the additive manufacturing space.

One such activity that Hill Engineering has been involved in is the NIST AM-Bench program. AM-Bench is developing a continuing series of controlled benchmark tests with two initial goals: 1) to allow modelers to test their simulations against rigorous, highly controlled additive manufacturing benchmark test data, and 2) to encourage additive manufacturing practitioners to develop novel mitigation strategies for challenging build scenarios. As part of this program, Hill Engineering has been working in collaboration with UC Davis to support residual stress measurement activities using the contour method. Continue reading Additive Manufacturing Benchmark Test Series

Case Study Highlight: 3D Scanner

Hill Engineering recently installed a Nikon ModelMaker H120 3D scanner, which is proving to be very useful in our laboratory. In addition to scanning services we now offer to outside parties, we’ve also implemented this technology into our residual stress measurement processes. This new capability allows us to produce faster, more accurate results than ever before. Continue reading Case Study Highlight: 3D Scanner