2022 SEM Annual Conference and Exposition on Experimental and Applied Mechanics

Hill Engineering will be presenting at the upcoming SEM Annual Conference and Exposition on Experimental and Applied Mechanics in Pittsburgh, PA on June 13th through June 16th. We invite you to come see us!

This conference focuses on all areas of research and applications pertaining to experimental mechanics, and has evolved to encompass the latest technologies supporting optical methods; additive & advanced manufacturing; dynamic behavior of materials; biological systems; micro-and nano mechanics; fatigue and fracture; composite and multifunctional materials; residual stress; inverse problem methodologies; thermomechanics; and time dependent materials. Hill Engineering’s presentation will include a summary of recent work related to residual stress measurement using slotting. The abstract text is presented below.

Continue reading 2022 SEM Annual Conference and Exposition on Experimental and Applied Mechanics

New Rapid Forge Design Article in FIA Magazine

Our Rapid Forge Design (RFD) software has generated a substantial amount of buzz since it’s release last year. If you’ve been keeping up with our social media accounts, you’ve probably caught us highlighting its key features and ease of use, especially through our demonstration video in which creator John Watton goes step-by-step through the closed-die impression forging design process.

For those who want a more comprehensive rundown of the software’s features and abilities, as well as plans for future design modules, John recently published an article in Forging Industry Association magazine, where he gives a history of how RFD came to be, and how it serves forgers and forging consumers.

Continue reading New Rapid Forge Design Article in FIA Magazine

ASIP 2021 Presentation: Development of a Residual Stress Standard

At the recent United States Air Force Structural Integrity Program Conference (ASIP) in Austin, TX, Hill Engineering co-authored a presentation titled Development of a Residual Stress Standard. The Aircraft Structural Integrity Program (ASIP) Conference is specifically designed to bring together the world leaders in the area of aircraft structural integrity and to disseminate information on state-of-the-art technologies for aircraft structures in both the military and civilian fleets. Below is the abstract from the presentation along with a link to the full conference slides.

Continue reading ASIP 2021 Presentation: Development of a Residual Stress Standard

HE Pet Spotlight: Saaz and Barley

Two German Shorthair Pointer dogs lying on a red blanket on a couch.
Saaz and Barley, the German Shorthair Pointers.

When we’re not performing residual stress measurements, some of the HE team members love spending time with their furry friends! Josh Hodges is no exception. He lives with his two German Shorthair Pointers, Saaz and Barley, ages 12 and 3 respectively.

Continue reading HE Pet Spotlight: Saaz and Barley

Special Issue of Experimental Mechanics

We are in the process of organizing a special Issue of Experimental Mechanics, the journal of the Society for Experimental Mechanics. The issue will be devoted to Advances in Residual Stress Technology in honor of Prof. Drew Nelson of Stanford University, for teaching several thousand engineering students about the importance of residual stresses and for developing new optically based approaches for measurement of residual stresses, along with studies of residual stress effects on fatigue. To date, we have accepted proposed paper topics from almost 20 world-leading authors from around the globe.

Continue reading Special Issue of Experimental Mechanics

Turbine Engine Technology Symposium 2021

Hill Engineering will be presenting at the upcoming Turbine Engine Technology Symposium (TETS) scheduled for September 15-17, 2021 at the Dayton Convention Center. We invite you to come see us.

The TETS Symposium is a biennial forum where the United States’ turbine engine community gathers to review and discuss the latest turbine engine technology advances. The Symposium draws an audience of approximately 1000 engineers, scientists, managers, and operational personnel from throughout the turbine engine community, including the Army, Navy, Air Force, NASA, DARPA, DOE, FAA, engine and aircraft manufacturers, material and component suppliers, and academia.

Hill Engineering’s presentation will include a summary of recent work related to predicting residual stress and airfoil distortion from shot peening and laser shock peening. The abstract text is presented below.

Continue reading Turbine Engine Technology Symposium 2021

Rapid Forge Design

Hill Engineering’s Rapid Forge Design™ software is an automated tool for fast and reliable design of 2-piece, closed-die impression forgings. Rapid Forge Design™ reads the final part geometry and automatically designs a forging according to accepted industry guidelines and user inputs. Rapid Forge Design™ is intended for use by forging suppliers and forging consumers/OEMs.

The Rapid Forge Design™ software comes with a user-friendly, graphical interface that allows for forging designs using a simple, 3-step, menu guided approach.

Download a fully-functional demo version of Rapid Forge Design™.

 

Illustration of Rapid Forge Design™ user interface

The inputs to Rapid Forge Design™ are the 3D geometry of the machined part (to be manufactured from the forging) and critical, user-defined parameters that allow for customization of the resulting forging design (e.g., minimum thickness and minimum radius values).

The forging design is generated by Rapid Forge Design™ according to a set of prescribed, industry-accepted design rules. After the user inputs are provided, the automated forging design process is completed by Rapid Forge Design™ in minutes without any further user intervention. With this approach, Rapid Forge Design™ enables the design of forgings with significantly less effort than existing manual processes.

Rapid Forge Design™ outputs the 3D geometry of the forging and a host of useful forging statistics and properties including volume, plan view area, periphery length, heat treatment section thickness, and other dimensional information. These metrics are essential to support the quoting process (material producers) and planning and costing activities (OEMs).

The preliminary forging designs produced by Rapid Forge Design™ can be used as the starting point for the finished forging’s more detailed design and tooling CAD files.

The Rapid Forge Design™ process is outlined in the flowchart below. The operator can input and customize important design parameters including: web thickness, draft wall cover, draft wall angle, plan view radius, fillet radius, and corner radius. Default values are provided based on alloy dependent industry standards. Help menus provide additional support and guidance, where necessary.

 

 

 

Summary of Rapid Forge Design™ workflow

Numerous examples taken from publicly available CAD files come with the software. The following are a few illustrations showing the ability of Rapid Forge Design™ to effectively produce forging designs for a wide variety of supplied final part geometry.

 

Illustration of forging designs produced by Rapid Forge Design™ (gold) along with the final machined part geometry that was used as the input for design (grey)

Download a fully-functional demo version of Rapid Forge Design™.

To place an order for Rapid Forge Design™ related goods and services, please contact us.

Case Study: Rapid Forge Design

Hill Engineering’s Rapid Forge DesignTM software is an automated tool for fast and reliable design of 2-piece, closed-die impression forgings. Rapid Forge DesignTM reads the final part geometry and automatically designs a forging according to accepted industry guidelines and user inputs. Rapid Forge DesignTM is intended for use by forging suppliers and forging consumers/OEMs.

Continue reading Case Study: Rapid Forge Design