Renan Ribeiro wins Henry O. Fuchs Student Award

Hill Engineering would like to congratulate Renan Ribeiro for winning the Henry O. Fuchs Student Award. Established in 1991, this award recognizes a graduate or recently graduated student that is working in the field of fatigue research and applications. The purpose of this award is to promote the education of engineering students in the area of fatigue technology. Continue reading Renan Ribeiro wins Henry O. Fuchs Student Award

BAMF version 7.0 release

Following the inputs from our user community, we continue to develop new capability in the Broad Application for Modeling Failure (BAMF) software. We are happy to announce the new version of BAMF (7.0) is now available, which includes several significant enhancements that improve the usability of BAMF and adds to the state-of-the-art capability not available in other fatigue analysis tools. Continue reading BAMF version 7.0 release

BAMF webinar

Hill Engineering will be participating in an upcoming webinar related to 3D fatigue analysis using our Broad Application for Modeling Failure (BAMF) software. BAMF is a software tool for predicting the growth of fatigue cracks in 3D parts. Starting from an assumed initial flaw, BAMF combines stress and crack growth analyses to predict the evolution of crack shape and size in 3D. BAMF provides a robust and automated link between two leading tools: AFGROW and StressCheck™. Continue reading BAMF webinar

BAMF 6.0 Release

Hill Engineering is announcing the release of version 6.0 of our Broad Application for Modeling Failure (BAMF) software. BAMF is used for fatigue analysis, and it is capable of predicting the growth of fatigue cracks in 3D parts. Starting from an assumed initial flaw, BAMF combines stress and crack growth analyses to predict the evolution of crack shape and size in 3D. Continue reading BAMF 6.0 Release

A Closer Look at Fatigue Surfaces

We’ve previously talked about fracture surfaces created as a result of material fatigue. Through fatigue tests, we are able to create a typical loading cycle on a test specimen to see how the number and magnitude of cycles affects the growth of cracks on the surface. After the test, we can perform fatigue analysis to see how the crack grew over time using a microscope. Continue reading A Closer Look at Fatigue Surfaces