Hill Engineering recently published new research presenting an innovative new way to measure near-surface residual stress more reliably than conventional techniques. The paper is titled Near Surface Residual Stress Measurement Using Slotting and appears in Experimental Mechanics. The abstract text is available here along with a link to the publication.
Continue reading New Publication – Near Surface Residual Stress Measurement Using SlottingCategory: Our Work
Search results for Hill Engineering blog posts under the subject category our work
Short Course Announcement – Residual Stress 101
The upcoming SEM Annual Conference and Exposition on Experimental and Applied Mechanics will include a Pre-conference Course titled: Residual Stress 101. The residual stress short course is scheduled for Sunday, June 12, 2022, from 9:00 a.m. to 5:00 p.m.
The course aims to cover a broad, practical introduction to residual stresses for students, researchers and industrialists with an interest in the subject. The course will be taught by Michael Prime, Michael Hill, Adrian DeWald, Luliana Cernatescu, Jeff Bunn, and Gary Schajer. Registration is currently open through the SEM Website.
Continue reading Short Course Announcement – Residual Stress 101New Rapid Forge Design Article in FIA Magazine
Our Rapid Forge Design (RFD) software has generated a substantial amount of buzz since it’s release last year. If you’ve been keeping up with our social media accounts, you’ve probably caught us highlighting its key features and ease of use, especially through our demonstration video in which creator John Watton goes step-by-step through the closed-die impression forging design process.
For those who want a more comprehensive rundown of the software’s features and abilities, as well as plans for future design modules, John recently published an article in Forging Industry Association magazine, where he gives a history of how RFD came to be, and how it serves forgers and forging consumers.
Continue reading New Rapid Forge Design Article in FIA MagazineASIP 2021 Presentation: Development of a Residual Stress Standard
At the recent United States Air Force Structural Integrity Program Conference (ASIP) in Austin, TX, Hill Engineering co-authored a presentation titled Development of a Residual Stress Standard. The Aircraft Structural Integrity Program (ASIP) Conference is specifically designed to bring together the world leaders in the area of aircraft structural integrity and to disseminate information on state-of-the-art technologies for aircraft structures in both the military and civilian fleets. Below is the abstract from the presentation along with a link to the full conference slides.
Continue reading ASIP 2021 Presentation: Development of a Residual Stress StandardHE Vlog: Introducing the Integrated Maintenance System, IMx+
In our latest vlog, Hill Engineering team member Bob Pilarczyk introduces the Integrated Maintenance System, or IMx+. This revolutionary system uses next generation technologies to address the quality assurance needs of the aerospace industry. Watch the video below for more information.
Continue reading HE Vlog: Introducing the Integrated Maintenance System, IMx+New Publication – Measurement Layout for Stress Mapping Using Slitting
Hill Engineering recently published new research detailing our efforts to optimize the experimental technique for our PSR Biaxial mapping process, which generates a 2D map of residual stress. The paper is titled Measurement Layout for Residual Stress Mapping Using Slitting and appears in Experimental Mechanics. The abstract text is available here along with a link to the publication.
Continue reading New Publication – Measurement Layout for Stress Mapping Using SlittingIn the Field with Ryan: On-site Residual Stress Measurements
While we at Hill Engineering take pride in our ability to perform high quality residual stress measurements in our laboratory, we recognize that not all parts and projects can be easily transported.
That’s where we bring the measurements to you with our Residual Stress Field Team. Our laboratory engineers are capable of performing residual stress measurements across the globe, and have done so on many occasions.
Continue reading In the Field with Ryan: On-site Residual Stress MeasurementsDeep-Hole Drilling on a bent-beam specimen
In 2019 Hill Engineering licensed VEQTER Ltd.’s world-leading Deep-Hole Drilling (DHD) technology. Under this agreement, Hill Engineering is delivering state-of-the-art DHD measurements within the North and South American Continents. Results from a recent DHD measurement on a bent-beam specimen are shared in this blog post.
Continue reading Deep-Hole Drilling on a bent-beam specimenIntroducing the DART – HE Vlog
Our latest vlog highlights the DART™, our turn-key, industry-leading tool for precise, reliable, and efficient near-surface residual stress measurements. The Device for Automated Residual stress Testing is capable of multiple measurement techniques including hole drilling and TrueSlot®. This flexibility allows for easy adaption as new applications arise.
Continue reading Introducing the DART – HE VlogCase Study: DART – automated residual stress measurement
Our latest case study highlights the many benefits of the DART™ automated measurement system, a tool we at Hill Engineering developed specifically to improve near-surface residual stress measurement techniques such as hole drilling and TRUEslot®.
Continue reading Case Study: DART – automated residual stress measurement