Hill Engineering is proud to support the USAF and their objective to advance damage tolerance analysis methods through the Engineered Residual Stress Implementation (ERSI) workshop. At this year’s ERSI meeting (September 12-13), Hill Engineering will meet with other stakeholders in the USAF aircraft community to review progress over the past year towards implementation of engineered residual stress in the USAF fleet. Continue reading Engineered Residual Stress Implementation workshop
Tag: Residual Stress Measurement
Search results for Hill Engineering blog posts containing the tag residual stress measurement
Additive Manufacturing Benchmark Test Series
As a follow-up to our previous post about additive manufacturing (AM) we wanted to highlight some other activities in the additive manufacturing space.
One such activity that Hill Engineering has been involved in is the NIST AM-Bench program. AM-Bench is developing a continuing series of controlled benchmark tests with two initial goals: 1) to allow modelers to test their simulations against rigorous, highly controlled additive manufacturing benchmark test data, and 2) to encourage additive manufacturing practitioners to develop novel mitigation strategies for challenging build scenarios. As part of this program, Hill Engineering has been working in collaboration with UC Davis to support residual stress measurement activities using the contour method. Continue reading Additive Manufacturing Benchmark Test Series
Residual stress in additive manufacturing
Additive manufacturing (AM) is a manufacturing process that deposits material in a controlled manner to build three-dimensional part geometry (bit by bit). This is in contrast to traditional manufacturing processes where material is cut or removed (i.e., subtracted) from the raw stock to create the intended part shape. The potential for additive manufacturing to significantly improve the economics and performance of manufactured parts for certain applications has made it a popular topic. However, since most additive manufacturing processes are highly thermal (e.g., material is deposited in a melted form and solidifies into the desired shape) significant residual stresses can develop. Hill Engineering has been working with many collaborators to better understand the influence of these processes on residual stress. Continue reading Residual stress in additive manufacturing
Hill Engineering acquires new 3D scanner
At Hill engineering we are always looking out for new technologies to improve our laboratory capability. As a part of this ongoing mission, we recently acquired a Nikon ModelMaker H120 3D scanner to incorporate in our lab. Continue reading Hill Engineering acquires new 3D scanner
Residual stress measurement techniques
Residual stresses exist in most materials and structures. Processes like forging, rolling, extruding, quenching, additive manufacturing, machining, and welding can cause residual stresses to develop. These stresses can influence the way that materials perform (e.g., fatigue, fracture, distortion, and corrosion). There are many different residual stress measurement techniques available to quantify residual stresses. The following are some examples of common measurement techniques. Continue reading Residual stress measurement techniques
Hole drilling residual stress measurement method
This week, we have uploaded a new vlog to Hill Engineering’s YouTube channel revolving around a particularly handy residual stress measurement technique. The hole drilling measurement method is one of our most popular residual stress measurement options, and involves the incremental drilling of a small hole into the surface of a specimen. Watch the video below and read on to learn more about the hole drilling method. Continue reading Hole drilling residual stress measurement method
The Contour Method (book chapter)
Chapter 5 of Practical Residual Stress Measurement Methods.
The contour method, which is based upon solid mechanics, determines residual stress through an experiment that involves carefully cutting a specimen into two pieces and measuring the resulting deformation due to residual stress redistribution. The measured displacement data are used to compute residual stresses through an analysis that involves a finite element model of the specimen. As part of the analysis, the measured deformation is imposed as a set of displacement boundary conditions on the model. The finite element model accounts for the stiffness of the material and part geometry to provide a unique result. The output is a two-dimensional map of residual stress normal to the measurement plane. The contour method is particularly useful for complex, spatially varying residual stress fields that are difficult (or slow) to map using conventional point wise measurement techniques. For example, the complex spatial variations of residual stress typical of welds are well-characterized using the contour method. A basic measurement procedure is provided along with comments about potential alternate approaches, with references for further reading.
The Slitting Method (book chapter)
Chapter 4 of Practical Residual Stress Measurement Methods.
The slitting method is a technique for measuring through thickness residual stress normal to a plane cut through a part. It involves cutting a slit (i.e., a thin slot) in increments of depth through the thickness of the work piece and measuring the resulting deformations as a function of slit depth. Residual stress as a function of through thickness position is determined by solving an inverse problem using measured deformations. The chapter describes practical measurement procedures, provides a number of example applications, and summarizes efforts to determine the quality of the residual stress information obtained with the method.
The Impact of Forging Residual Stress on Fatigue in Aluminum
Large aluminum forgings are seeing increased application in aerospace structures, particularly as an enabler for structural unitization. These applications, however, demand an improved understanding of the forging process induced bulk residual stresses and their impact on both design mechanical properties and structural performance. In recent years, significant advances in both computational and experimental methods have led to vastly improved characterization of residual stresses.
Repeatability of residual stress measurements
Residual stresses are of interest from an engineering perspective because they can have a significant influence on material performance. For example, fatigue initiation, fatigue crack growth rate, stress corrosion cracking, and fracture are all influenced by the presence of residual stress. Current design methods for aerospace structure typically assume that the material is residual stress-free.