Hill Engineering announces agreement with VEQTER for Deep-Hole Drilling technology

Hill Engineering, answering strong demand for its residual stress measurement services, would like to announce our agreement with VEQTER, Ltd to license the Deep-Hole Drilling (DHD) technology. VEQTER, along with the University of Bristol, aided in the development of the DHD technique, and have practiced the technology for over 25 years. With this agreement, VEQTER will provide Hill Engineering with the equipment, technology, and support to deliver state-of-the-art DHD measurements within the North and South American Continents. Continue reading Hill Engineering announces agreement with VEQTER for Deep-Hole Drilling technology

Engineered Residual Stress Implementation workshop

Hill Engineering is proud to support the USAF and their objective to advance damage tolerance analysis methods through the Engineered Residual Stress Implementation (ERSI) workshop. At this year’s ERSI meeting (September 12-13), Hill Engineering will meet with other stakeholders in the USAF aircraft community to review progress over the past year towards implementation of engineered residual stress in the USAF fleet. Continue reading Engineered Residual Stress Implementation workshop

Welcome John Watton

We would like to welcome John Watton to Hill Engineering. John comes with more than 30 years of experience, most recently from Arconic where he worked at the Arconic Technical Center. John obtained an undergraduate degree in mechanical engineering jointly with Acadia University and the Technical University of Nova Scotia, and earned graduate degrees in mechanical engineering at Stanford University (masters, applied mechanics) and Carnegie Mellon University (Ph.D., design and expert systems).

Continue reading Welcome John Watton

Additive Manufacturing Benchmark Test Series

As a follow-up to our previous post about additive manufacturing (AM) we wanted to highlight some other activities in the additive manufacturing space.

One such activity that Hill Engineering has been involved in is the NIST AM-Bench program. AM-Bench is developing a continuing series of controlled benchmark tests with two initial goals: 1) to allow modelers to test their simulations against rigorous, highly controlled additive manufacturing benchmark test data, and 2) to encourage additive manufacturing practitioners to develop novel mitigation strategies for challenging build scenarios. As part of this program, Hill Engineering has been working in collaboration with UC Davis to support residual stress measurement activities using the contour method. Continue reading Additive Manufacturing Benchmark Test Series

BAMF webinar

Hill Engineering will be participating in an upcoming webinar related to 3D fatigue analysis using our Broad Application for Modeling Failure (BAMF) software. BAMF is a software tool for predicting the growth of fatigue cracks in 3D parts. Starting from an assumed initial flaw, BAMF combines stress and crack growth analyses to predict the evolution of crack shape and size in 3D. BAMF provides a robust and automated link between two leading tools: AFGROW and StressCheck™. Continue reading BAMF webinar

Residual stress biaxial mapping validation

Hill Engineering recently published new research detailing our efforts to validate the PSR biaxial mapping technique for residual stress measurement.

This new technique generates two-dimensional maps of additional residual stress components over the same plane as the original contour method measurement. The paper is titled Assessment of Primary Slice Release Residual Stress Mapping in a Range of Specimen Types and appears in the November 2018 volume of Experimental Mechanics. Continue reading Residual stress biaxial mapping validation

2019 SEM Annual Conference and Exposition on Experimental and Applied Mechanics

Hill Engineering will be presenting at the upcoming SEM Annual Conference and Exposition on Experimental and Applied Mechanics in Reno, NV from June 3rd through June 6th. We invite you to come see us. This conference focuses on all areas of research and applications pertaining to experimental mechanics, and has evolved to encompass the latest technologies supporting:

  • optical methods
  • additive & advanced manufacturing
  • dynamic behavior of materials
  • biological systems
  • micro-and nano mechanics
  • fatigue and fracture
  • composite and multifunctional materials
  • residual stress
  • inverse problem methodologies
  • thermomechanics
  • time dependent materials.

Hill Engineering’s presentation will include a summary of recent work related to regularization uncertainty in slitting residual stress measurement. The abstract text is presented below.

This presentation describes the development of an uncertainty estimate for slitting residual stress measurement. The uncertainty estimate includes a newly developed uncertainty estimate related to the smoothing used in the stress calculation procedure called the regularization uncertainty. This work describes the approach to define the regularization uncertainty, shows the usefulness of the uncertainty estimate in a numerical experiment and a repeatability study. The uncertainty estimate is shown to meet an acceptance criterion that compares the calculated (measured) stress ± its uncertainty estimate to the true value for the numerical experiment or the mean stress from the repeatability study. This works shows the regularization uncertainty estimate to be a necessary contributor to the uncertainty in slitting and additionally the uncertainty estimate developed here reasonably predicts the uncertainty present in slitting method residual stress measurements.

If you are planning to attend the conference please stop by to discuss Hill Engineering’s capabilities in fatigue analysis and design and residual stress measurement . Please contact us for more information.

Residual stress in additive manufacturing

Additive manufacturing (AM) is a manufacturing process that deposits material in a controlled manner to build three-dimensional part geometry (bit by bit). This is in contrast to traditional manufacturing processes where material is cut or removed (i.e., subtracted) from the raw stock to create the intended part shape. The potential for additive manufacturing to significantly improve the economics and performance of manufactured parts for certain applications has made it a popular topic. However, since most additive manufacturing processes are highly thermal (e.g., material is deposited in a melted form and solidifies into the desired shape) significant residual stresses can develop. Hill Engineering has been working with many collaborators to better understand the influence of these processes on residual stress. Continue reading Residual stress in additive manufacturing

Residual Stress 101

The upcoming SEM Annual Conference and Exposition on Experimental and Applied Mechanics will include a Pre-conference Course titled: Residual Stress 101. Scheduled for Sunday, June 2, 2019 from 9:00 a.m. to 5:00 p.m, the residual stress short-course aims to cover a broad, practical introduction to residual stresses for interested students, researchers and industrialists. Michael Prime, Michael Hill, Adrian DeWald, Antonio Baldi, and Cev Noyan will teach the course. Registration is currently open through the SEM website. Continue reading Residual Stress 101