Residual Stress

Residual stress is the stress present in a material in the absence of externally applied loading. These stresses can often form during manufacturing, and are typically an unintentional byproduct of a manufacturing process. Residual stresses can be caused by a number of factors, including plastic deformations, temperature cycles, or phase transformations.

Residual stresses can positively or negatively affect a product’s performance, which makes them a vital consideration for any critical design component. Often, structures are designed with considerable safety factors, in which case the effects of residual stress can be ignored, but as we push for higher performing structures that operate closer to the cutting-edge of technology, factors like residual stress can be the difference between successful performance and structural failure.

Positive values of residual stress are referred to as tensile, meaning the material is being pulled or stretched. Unintended tensile residual stresses can cause undesirable results, including cracking and failure. If tensile stresses induced by manufacturing processes are not taken into account, these can lead to premature failure.

A slim metal coupon with a fracture surface showing a crack growth area shaped like ripples from a source location.
A fatigue crack that grew from a countersunk fastener hole.

Negative values of residual stress are referred to as compressive, meaning the material is being pushed together. These kinds of residual stresses can improve the performance of fatigue-critical components. Surface treatment processes like shot peening and laser shock peening intentionally introduce compressive stress in select locations at the material surface to make products perform better. For instance, introducing compressive residual stress can toughen brittle materials such as glass in smartphone screens or pre-stressed concrete used in city infrastructure.

A construction worker wearing a yellow hard hat crouched over a grid of metal rebar.
Rebar is often used to negatively pre-stress concrete in order to prevent cracking.

Overall, the residual stress on any given plane in a material must be in equilibrium, but there can be local regions with tensile or compressive stress. Below is our Residual Stress 101 vlog, which highlights the information above.

Residual stress engineering involves the practice of manipulating residual stresses in order to maximize the usability and lifespan of manufactured components.

Through residual stress measurement techniques, Hill Engineering is capable of quantifying the internal stresses in a material, to better inform design decisions. We are the industry leader in Contour Method measurements and provide the same level of precision and accountability in a broad range of other residual stress measurement methods.

The methods we employ are as follows:

Hill Engineering is a trusted source for a wide range of measurement capabilities. For more information about residual stresses or any of the residual stress measurement techniques we employ at Hill Engineering, feel free to contact us.

Hill Engineering featured in Railway Track & Structures – August 2022

We recently learned that some hole drilling method and contour method results were highlighted in the August 2022 issue of Railway Track and Structures. The article is titled Residual stress investigation of ultrasonic impact treated and untreated thermite welds.

Continue reading Hill Engineering featured in Railway Track & Structures – August 2022

Presentation: 1st ASTM Bearing and Transmission Steels Technology Symposium

Hill Engineering will be presenting at the upcoming 1st ASTM Bearing and Transmission Steels Technology Symposium in New Orleans, LA on November 2nd through the 16th. We invite you to come see us.

Held at the Sheraton New Orleans Hotel, the objective of the symposium is to bring together rolling bearing and transmission steel practitioners from the steel industries, rolling bearing and transmission product producers, research and development institutes and academia, to present the latest steel technologies and developments.

The abstract for Hill Engineering’s presentation, titled Efficient Residual Stress Quantification in M50NiL Bearing Steel, is included below.

Continue reading Presentation: 1st ASTM Bearing and Transmission Steels Technology Symposium

New Publication: Measurement-driven, model-based estimation of residual stress and its effect on fatigue crack growth. Pt 2: fatigue crack growth testing and modeling

Hill Engineering recently published new research outlining a approach for predicting fatigue crack growth in the presence of residual stress fields. The paper is titled Measurement-driven, model-based estimation of residual stress and its effect on fatigue crack growth. Part 2: fatigue crack growth testing and modeling and appears in International Journal of Fatigue. The abstract text is available here along with a link to the publication.

Continue reading New Publication: Measurement-driven, model-based estimation of residual stress and its effect on fatigue crack growth. Pt 2: fatigue crack growth testing and modeling

New Publication: Measurement-driven, model-based estimation of residual stress and its effects on fatigue crack growth. Pt 1: validation of an eigenstrain model

Hill Engineering recently published new research outlining a approach for predicting fatigue crack growth in the presence of residual stress fields. The paper is titled Measurement-driven, model-based estimation of residual stress and its effects on fatigue crack growth. Part 1: validation of an eigenstrain model and appears in International Journal of Fatigue. The abstract text is available here along with a link to the publication.

Continue reading New Publication: Measurement-driven, model-based estimation of residual stress and its effects on fatigue crack growth. Pt 1: validation of an eigenstrain model

New Publication – Near Surface Residual Stress Measurement Using Slotting

Hill Engineering recently published new research presenting an innovative new way to measure near-surface residual stress more reliably than conventional techniques. The paper is titled Near Surface Residual Stress Measurement Using Slotting and appears in Experimental Mechanics. The abstract text is available here along with a link to the publication.

Continue reading New Publication – Near Surface Residual Stress Measurement Using Slotting

ASIP 2021 Presentation: Development of a Residual Stress Standard

At the recent United States Air Force Structural Integrity Program Conference (ASIP) in Austin, TX, Hill Engineering co-authored a presentation titled Development of a Residual Stress Standard. The Aircraft Structural Integrity Program (ASIP) Conference is specifically designed to bring together the world leaders in the area of aircraft structural integrity and to disseminate information on state-of-the-art technologies for aircraft structures in both the military and civilian fleets. Below is the abstract from the presentation along with a link to the full conference slides.

Continue reading ASIP 2021 Presentation: Development of a Residual Stress Standard

Contour Method 101: Two-Dimensional Mapping of Residual Stress

We talk a lot about the residual stress measurement techniques we employ at Hill Engineering. One of the most commonly used is the Contour Method! Invented in the year 2000, and patented by Los Alamos National Laboratory, the contour method measures 2D residual stresses over a planar surface.

Continue reading Contour Method 101: Two-Dimensional Mapping of Residual Stress

New Publication – Measurement Layout for Stress Mapping Using Slitting

Hill Engineering recently published new research detailing our efforts to optimize the experimental technique for our PSR Biaxial mapping process, which generates a 2D map of residual stress. The paper is titled Measurement Layout for Residual Stress Mapping Using Slitting and appears in Experimental Mechanics. The abstract text is available here along with a link to the publication.

Continue reading New Publication – Measurement Layout for Stress Mapping Using Slitting

In the Field with Ryan: On-site Residual Stress Measurements

While we at Hill Engineering take pride in our ability to perform high quality residual stress measurements in our laboratory, we recognize that not all parts and projects can be easily transported.

That’s where we bring the measurements to you with our Residual Stress Field Team. Our laboratory engineers are capable of performing residual stress measurements across the globe, and have done so on many occasions.

Continue reading In the Field with Ryan: On-site Residual Stress Measurements