Our Work

The Contour Method (book chapter)

Chapter 5 of Practical Residual Stress Measurement Methods.

The contour method, which is based upon solid mechanics, determines residual stress through an experiment that involves carefully cutting a specimen into two pieces and measuring the resulting deformation due to residual stress redistribution. The measured displacement data are used to compute residual stresses through an analysis that involves a finite element model of the specimen. As part of the analysis, the measured deformation is imposed as a set of displacement boundary conditions on the model. The finite element model accounts for the stiffness of the material and part geometry to provide a unique result. The output is a two-dimensional map of residual stress normal to the measurement plane. The contour method is particularly useful for complex, spatially varying residual stress fields that are difficult (or slow) to map using conventional point wise measurement techniques. For example, the complex spatial variations of residual stress typical of welds are well-characterized using the contour method. A basic measurement procedure is provided along with comments about potential alternate approaches, with references for further reading.

Citation
Authors’ version at LANL