Case Study Highlight: 3D Scanner

Hill Engineering recently installed a Nikon ModelMaker H120 3D scanner, which is proving to be very useful in our laboratory. In addition to scanning services we now offer to outside parties, we’ve also implemented this technology into our residual stress measurement processes. This new capability allows us to produce faster, more accurate results than ever before.

For those who don’t know, 3D scanners are powerful tools with many applications ranging from dimensional inspection to reverse engineering. Typically, 3D scanners are used to create a 3D representation of the geometry of a complex part. Initially the part geometry may be represented by thousands or millions of individual points, which can then be used to reconstruct a solid model of the part.

Out most recent case study highlights some of the finer details of our new instrument, as well as a few demonstrations of its capabilities. If you’re more of a visual person, we’ve also posted a YouTube video where we review the same information.

If you have any questions about our scanner or any of the other services we offer, please feel free to contact us.


The Nikon ModelMaker H120

3D Scanning

3D scanners are powerful tools with many applications ranging from dimensional inspection to reverse engineering. Typically, 3D scanners are used to create a 3D representation of the geometry of a complex part. Initially the part geometry may be represented by thousands or millions of individual points. These points can then be used to reconstruct a model of the part.

Many of our projects at Hill Engineering benefit from 3D scanning technology. In addition, Hill Engineering offers 3D scanning services for others on a fee-for-service basis. Some typical applications that require the use of a 3D scanner include:

• Quality assurance inspection: checking the geometry of manufactured parts to ensure consistency with drawing requirements
• Reverse engineering: generating a CAD model of a physical object for use in future design or manufacturing
• Machining distortion: evaluating the effects of different machining and manufacturing processes on the final machined shape of parts
• Engineered residual stress: evaluating the effects of residual stress surface treatments on the deformation of parts

At Hill Engineering we use a Nikon ModelMaker H120 3D scanner. The cutting-edge ModelMaker H120 incorporates blue laser technology, ultra-fast frame rate, specially developed Nikon optics and the ability to measure the most challenging materials. The following is a summary of the system specifications:
• Measuring range: 78.75 inches (2.0 m)
• Measurement accuracy: 0.0011 inches (0.028 mm)
• Minimum resolution: 0.0014 inches (0.035 mm)

Figure 1 – Photograph of Nikon ModelMaker H120 scanning a case

The illustrations below show example 3D scans that illustrate the capability of the Nikon ModelMaker H120 3D scanner. The first example shows an image taken from a 3D scan of a cordless drill. The second example shows a comparison between a scan of a new computer mouse and a used computer mouse. The colors show the regions of wear from continued use (red is worn).

Figure 2 – Illustration of a 3D scan of a cordless drill

Figure 3 – Comparison between a 3D scan of a new mouse and a used mouse showing regions of wear

Inspecting your parts using state-of-the-art 3D laser scanners provides the geometric insight needed to take the right engineering and quality assurance decisions. Hill Engineering’s in-house 3D scanning services provides a fast and reliable solution to meet your 3D scanning needs. Results are supplied in the form of easy-to-interpret graphic reports, complemented with complete measurement datasets. Please contact us with additional questions about 3D scanning services.

Residual stress biaxial mapping validation

Hill Engineering recently published new research detailing our efforts to validate the PSR biaxial mapping technique for residual stress measurement.

This new technique generates two-dimensional maps of additional residual stress components over the same plane as the original contour method measurement. The paper is titled Assessment of Primary Slice Release Residual Stress Mapping in a Range of Specimen Types and appears in the November 2018 volume of Experimental Mechanics. Continue reading Residual stress biaxial mapping validation

Meet our new 3D scanner

We at Hill Engineering are always looking for ways to improve the accuracy and efficiency of our laboratory. That’s why we recently acquired a 3D scanner for our laboratory, which will aid in many aspects of our residual stress measurement processes, as well as enable us to provide further services to our customers. In the newest video on our YouTube channel , we discuss some of the highlights of this tool. Continue reading Meet our new 3D scanner

Overview of a strain gage

We talk about strain gages a lot in our blogs, vlogs, and all over our website. That’s because strain gages are a crucial element of the work we do at Hill Engineering. Our little rectangular friends are very important sensors for residual stress measurements. That something so small can be so important is astounding, but how exactly do strain gages work? Continue reading Overview of a strain gage

Mapping multiple residual stress components with PSR biaxial mapping

The contour method provides a spatially resolved two-dimensional map of the component of residual stress acting normal to a plane through a part. Hill Engineering recently developed an extension to the contour method, called PSR biaxial mapping, which generates two-dimensional maps of additional residual stress components over the same plane. When combined with traditional contour method measurements, PSR biaxial mapping is a very powerful residual stress measurement tool.

The basic steps for a PSR biaxial mapping residual stress measurement are illustrated below. First, the contour method is used to measure the residual stress component normal to a plane of interest. Next, a thin slice of material adjacent to the contour method measurement plane is removed. The residual stress in the thin slice is altered during the contour method measurement and subsequent slice removal. This change in residual stress is called the PSR stress. The residual stress in the removed thin slice is determined using a series of slitting measurements. The residual stress in the removed slice is referred to as the slice stress. The residual stress in the original configuration (prior to extracting the slice) is expressed as the sum of the slice stress (residual stress measured in the removed slice) and the PSR stress (residual stress released when the slice is removed from the body).

Figure 1 – Experimental steps used in a PSR mapping measurement

An example PSR biaxial mapping residual stress measurement is shown for a nickel alloy forging (Udimet-720Li). The forging had a diameter of approximately 151 mm (5.9 in) and a maximum height of 70 mm (2.7 in). The contour method was used to measure the hoop residual stress in the forging. Following completion of the contour method measurement, wedge shaped slices were removed adjacent to the contour measurement plane. Slitting measurements were used to develop a 2D map of the radial residual stress in the slices. The measured radial stress in the slices was combined with the PSR stress to determine the radial residual stress at the measurement plane in the original configuration.

Plots of the measured two-dimensional maps of the hoop residual stress (contour method) and radial residual stress (PSR biaxial mapping) are shown below. The hoop residual stress is tensile towards the center of the forging and near the inner diameter (maximum value of approximately 450 MPa) and has compensating compressive residual stress towards the outer diameter and along the top and bottom of the forging. The radial residual stress is also tensile near the center of the forging (maximum value of approximately 200 MPa) and compressive at the top and bottom.

Figure 2 – Two-dimensional maps of residual stress in the nickel disk forging: (a) hoop direction stress and (b) radial direction stress

PSR biaxial mapping has been used to measure 2D residual stress maps for a variety of applications including: a quenched aluminum extrusion, a stainless steel welded plate, a complex nuclear power plant nozzle mockup containing a dissimilar metal weld, an aluminum T-section, a stainless steel plate with a dissimilar metal weld, a titanium plate with an electron beam weld, and a nickel alloy forging.

Additional information about bulk residual stress measurement using PSR biaxial mapping can be found in the references below. Also, please feel free to read about other residual stress measurement techniques on our website or to contact us with additional questions.

Reference information:
M. D. Olson and M. R. Hill, “A New Mechanical Method for Biaxial Residual Stress Mapping,” Experimental Mechanics, volume 55, number 6, 2015, pp. 1139–1150.

Hole drilling residual stress measurement method

This week, we have uploaded a new vlog to Hill Engineering’s YouTube channel revolving around a particularly handy residual stress measurement technique. The hole drilling measurement method is one of our most popular residual stress measurement options, and involves the incremental drilling of a small hole into the surface of a specimen. Watch the video below and read on to learn more about the hole drilling method. Continue reading Hole drilling residual stress measurement method

Case Study: Contour Method Repeatability

Recently, Hill Engineering posted a new case study detailing our research into contour method repeatability. In the case study, we performed contour method measurements on multiple similar specimens belonging to six different specimen types: aluminum T-section, stainless steel plate with dissimilar metal slot-filled weld, stainless steel forging, titanium plate with electron beam slot-filled weld, nickel disk forging, and aluminum plate. Continue reading Case Study: Contour Method Repeatability