Hill Engineering Blog

The first contour method measurement specimen

Hill Engineering’s new facility in Rancho Cordova, CA features a combination of laboratory, research and development, and office space. Our primary conference room is named in honor of Mike Prime, the inventor of the contour method. The Prime Room stands as a tribute to the creativity, insights, and support that Mike Prime has provided to Hill Engineering over the years. One of our favorite pieces on display in the Prime Room is one half of the specimen that was used for the first successful contour method measurement. Continue reading The first contour method measurement specimen

Hole drilling residual stress measurement method

This week, we have uploaded a new vlog to Hill Engineering’s YouTube channel revolving around a particularly handy residual stress measurement technique. The hole drilling measurement method is one of our most popular residual stress measurement options, and involves the incremental drilling of a small hole into the surface of a specimen. Watch the video below and read on to learn more about the hole drilling method. Continue reading Hole drilling residual stress measurement method

Ring core

At Hill Engineering we work with residual stress on a daily basis. Ring Core is one of the techniques that we use for residual stress measurement. Ring Core is capable of measuring residual stress over depths spanning the near-surface to bulk regions, and can be applied to quantify the average residual stress over the depth of a drilled core. Ring Core is portable, and can be applied under a variety of circumstances, including in the field. Hill Engineering uses Ring Core measurements to support process development and quality control. Ring Core measurements can be performed in our laboratory or at your site, to your specifications. Continue reading Ring core

Hole Drilling Method for Measuring Residual Stresses

We’d like to share with our loyal followers a new book: Hole Drilling Method for Measuring Residual Stresses, written by Gary S. Schajer and Philip S. Whitehead. As you all know, Hole Drilling measures near-surface residual stress. The Hole Drilling method can be applied to quantify the average residual stress over the depth of a drilled hole (typically 1.0 mm depth). It can also be applied to determine the distribution of residual stress versus depth from the surface to a depth of half the hole diameter. Hole Drilling is portable and is a common method for residual stress measurement that can be applied under a variety of circumstances, including in the field. Continue reading Hole Drilling Method for Measuring Residual Stresses

Thermal Processing in Motion 2018 – recap

Hill Engineering recently attended the 2018 Thermal Processing in Motion Conference in Spartanburg, South Carolina. This conference brings together international experts from around the globe to present the latest innovations and research in thermal processing including: additive manufacturing; phase transformations; microstructure/property relationships; quenching and quenchants; thermomechanical thermal processing; and surface hardening. The second day of the conference included a Residual Stress Workshop. Continue reading Thermal Processing in Motion 2018 – recap

Thermal Processing in Motion 2018

Hill Engineering is delivering a keynote address titled Overview of Residual Stress Measurement in Industry Applications at the upcoming 2018 Thermal Processing in Motion Conference in Spartanburg, South Carolina. The mission of this conference is to bring together international experts from around the globe to present the latest innovations and research in thermal processing including: additive manufacturing; phase transformations; microstructure/property relationships; quenching and quenchants; thermomechanical thermal processing; and surface hardening. Hill Engineering’s presentation will include a summary of recent work related to residual stress measurement in support of production quality control. Continue reading Thermal Processing in Motion 2018

A Closer Look at Fatigue Surfaces

We’ve previously talked about fracture surfaces created as a result of material fatigue. Through fatigue tests, we are able to create a typical loading cycle on a test specimen to see how the number and magnitude of cycles affects the growth of cracks on the surface. After the test, we can perform fatigue analysis to see how the crack grew over time using a microscope. Continue reading A Closer Look at Fatigue Surfaces

Case Study: Contour Method Repeatability

Recently, Hill Engineering posted a new case study detailing our research into contour method repeatability. In the case study, we performed contour method measurements on multiple similar specimens belonging to six different specimen types: aluminum T-section, stainless steel plate with dissimilar metal slot-filled weld, stainless steel forging, titanium plate with electron beam slot-filled weld, nickel disk forging, and aluminum plate. Continue reading Case Study: Contour Method Repeatability

AeroMat 2018: Residual stress production quality control

Hill Engineering is presenting about residual stress production quality control at the upcoming 2018 AeroMat Conference in Orlando, FL. The AeroMat Conference focuses on innovative aerospace materials, fabrication and manufacturing methods that improve performance, durability and sustainability of aerospace structures and engines with reduced life-cycle costs. Hill Engineering’s presentation will include an overview of ongoing work related to quality control processes for residual stress in manufacturing. The abstract text is presented below. Continue reading AeroMat 2018: Residual stress production quality control